Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2317240121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427600

RESUMO

Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.


Assuntos
Variações do Número de Cópias de DNA , Genoma , Animais , DNA de Plantas/genética , Variações do Número de Cópias de DNA/genética , Filogenia , DNA Mitocondrial/genética , Plantas/genética
2.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396955

RESUMO

The plastid genomes (plastomes) of angiosperms are typically highly conserved, with extreme reconfiguration being uncommon, although reports of such events have emerged in some lineages. In this study, we conducted a comprehensive comparison of the complete plastomes from twenty-two species, covering seventeen genera from three subfamilies (Fumarioideae, Hypecooideae, and Papaveroideae) of Papaveraceae. Our results revealed a high level of variability in the plastid genome size of Papaveraceae, ranging from 151,864 bp to 219,144 bp in length, which might be triggered by the expansion of the IR region and a large number of repeat sequences. Moreover, we detected numerous large-scale rearrangements, primarily occurring in the plastomes of Fumarioideae and Hypecooideae. Frequent gene loss or pseudogenization were also observed for ndhs, accD, clpP, infA, rpl2, rpl20, rpl32, rps16, and several tRNA genes, particularly in Fumarioideae and Hypecooideae, which might be associated with the structural variation in their plastomes. Furthermore, we found that the plastomes of Fumarioideae exhibited a higher GC content and more repeat sequences than those of Papaveroideae. Our results showed that Papaveroideae generally displayed a relatively conserved plastome, with the exception of Eomecon chionantha, while Fumarioideae and Hypecooideae typically harbored highly reconfigurable plastomes, showing high variability in the genome size, gene content, and gene order. This study provides insights into the plastome evolution of Papaveraceae and may contribute to the development of effective molecular markers.


Assuntos
Genomas de Plastídeos , Papaveraceae , Filogenia , Papaveraceae/genética , Sequências Repetitivas de Ácido Nucleico , Rearranjo Gênico , Evolução Molecular
3.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391484

RESUMO

The interaction and coevolution between nuclear and cytoplasmic genomes are one of the fundamental hallmarks of eukaryotic genome evolution and, 2 billion yr later, are still major contributors to the formation of new species. Although many studies have investigated the role of cytonuclear interactions following allopolyploidization, the relative magnitude of the effect of subgenome dominance versus cytonuclear interaction on genome evolution remains unclear. The Brassica triangle of U features 3 diploid species that together have formed 3 separate allotetraploid species on similar evolutionary timescales, providing an ideal system for understanding the contribution of the cytoplasmic donor to hybrid polyploid. Here, we investigated the evolutionary pattern of organelle-targeted genes in Brassica carinata (BBCC) and 2 varieties of Brassica juncea (AABB) at the whole-genome level, with particular focus on cytonuclear enzyme complexes. We found partial evidence that plastid-targeted genes experience selection to match plastid genomes, but no obvious corresponding signal in mitochondria-targeted genes from these 2 separately formed allopolyploids. Interestingly, selection acting on plastid genomes always reduced the retention rate of plastid-targeted genes encoded by the B subgenome, regardless of whether the Brassica nigra (BB) subgenome was contributed by the paternal or maternal progenitor. More broadly, this study illustrates the distinct selective pressures experienced by plastid- and mitochondria-targeted genes, despite a shared pattern of inheritance and natural history. Our study also highlights an important role for subgenome dominance in allopolyploid genome evolution, even in genes whose function depends on separately inherited molecules.


Assuntos
Evolução Molecular , Genoma de Planta , Mostardeira/genética , Plastídeos/genética , Poliploidia
4.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324417

RESUMO

Cytonuclear interaction refers to the complex and ongoing process of coevolution between nuclear and organelle genomes, which are responsible for cellular respiration, photosynthesis, lipid metabolism, etc. and play a significant role in adaptation and speciation. There have been a large number of studies to detect signatures of cytonuclear interactions. However, identification of the specific nuclear and organelle genetic polymorphisms that are involved in these interactions within a species remains relatively rare. The recent surge in whole genome sequencing has provided us an opportunity to explore cytonuclear interaction from a population perspective. In this study, we analyzed a total of 3,439 genomes from 7 species to identify signals of cytonuclear interactions by association (linkage disequilibrium) analysis of variants in both the mitochondrial and nuclear genomes across flowering plants. We also investigated examples of nuclear loci identified based on these association signals using subcellular localization assays, gene editing, and transcriptome sequencing. Our study provides a novel perspective on the investigation of cytonuclear coevolution, thereby enriching our understanding of plant fitness and offspring sterility.


Assuntos
Núcleo Celular , Mitocôndrias , Núcleo Celular/genética , Mitocôndrias/genética , Genoma , Polimorfismo Genético , Plantas/genética
5.
Mol Phylogenet Evol ; 193: 108023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342159

RESUMO

The Himalaya-Hengduan Mountains (HHM), a renowned biodiversity hotspot of the world, harbors the most extensive habitats for alpine plants with extraordinary high levels of endemism. Although the general evolution pattern has been elucidated, the underlying processes driving spectacular radiations in many species-rich groups remain elusive. Corydalis DC. is widely distributed throughout the Northern Hemisphere containing more than 500 species, with high diversity in HHM and adjacent regions. Using 95 plastid genes, 3,258,640 nuclear single nucleotide polymorphisms (SNPs) and eight single-copy nuclear genes (SCNs) generated from genome skimming data, we reconstructed a robust time-calibrated phylogeny of Corydalis comprising more than 100 species that represented all subgenera and most sections. Molecular dating indicated that all main clades of Corydalis began to diverge in the Eocene, with the majority of extant species in HHM emerged from a diversification burst after the middle Miocene. Global pattern of mean divergence times indicated that species distributed in HHM were considerably younger than those in other regions, particularly for the two most species-rich clades (V and VI) of Corydalis. The early divergence and the recent diversification of Corydalis were most likely promoted by the continuous orogenesis and climate change associated with the uplift of the Qinghai-Tibetan Plateau (QTP). Our study demonstrates the effectivity of phylogenomic analyses with genome skimming data on the phylogeny of species-rich taxa, and sheds lights on how the uplift of QTP has triggered the evolutionary radiations of large plant genera in HHM and adjacent regions.


Assuntos
Corydalis , Filogenia , 60479 , Biodiversidade , Ecossistema , Plantas
6.
Trends Plant Sci ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38220520

RESUMO

Plastids and mitochondria are the only organelles that possess genomes of endosymbiotic origin. In recent decades, advances in sequencing technologies have contributed to a meteoric rise in the number of published organellar genomes, and have revealed greatly divergent evolutionary trajectories. In this review, we quantify the abundance and distribution of sequenced plant organellar genomes across the plant tree of life. We compare numerous genomic features between the two organellar genomes, with an emphasis on evolutionary trajectories, transfers, the current state of organellar genome editing by transcriptional activator-like effector nucleases (TALENs), transcription activator-like effector (TALE)-mediated deaminase, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas), as well as genetic transformation. Finally, we propose future research to understand these different evolutionary trajectories, and genome-editing strategies to promote functional studies and eventually improve organellar genomes.

7.
Mitochondrial DNA B Resour ; 9(1): 163-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274855

RESUMO

Petrocosmea qinlingensis is a protected wild plant endemic in China, inhabiting low-light limestone cliffs but the complete chloroplast genome has not been reported. In this study, we first sequenced and assembled the complete chloroplast genome of P. qinlingensis. The total size of this genome was 153,865 bp, including a large single-copy (LSC) region (84,737 bp), a small single-copy (SSC) region (18,244 bp), and two inverted repeats (IRs) regions (25,442 bp). This genome encoded 111 uniquegenes, consisted of 77 protein-coding genes, four ribosomal RNA genes, and 30 transfer RNA genes. Phylogenomic analysis based on the chloroplast protein-coding genes and showed that the genus Petrocosmea was the closest relative to Raphiocarpus. Our results will support further phylogeographic, population genetic studies of this species.

8.
Genes (Basel) ; 14(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37761883

RESUMO

Curcuma alismatifolia (Zingiberaceae) is an ornamental species with high economic value due to its recent rise in popularity among floriculturists. Cultivars within this species have mixed genetic backgrounds from multiple hybridization events and can be difficult to distinguish via morphological and histological methods alone. Given the need to improve identification resources, we carried out the first systematic study using plastomic data wherein genomic evolution and phylogenetic relationships from 56 accessions of C. alismatifolia were analyzed. The newly assembled plastomes were highly conserved and ranged from 162,139 bp to 164,111 bp, including 79 genes that code for proteins, 30 tRNA genes, and 4 rRNA genes. The A/T motif was the most common of SSRs in the assembled genomes. The Ka/Ks values of most genes were less than 1, and only two genes had Ka/Ks values above 1, which were rps15 (1.15), and ndhl (1.13) with petA equal to 1. The sequence divergence between different varieties of C. alismatifolia was large, and the percentage of variation in coding regions was lower than that in the non-coding regions. Such data will improve cultivar identification, marker assisted breeding, and preservation of germplasm resources.


Assuntos
Curcuma , Zingiberaceae , Curcuma/genética , Filogenia , Melhoramento Vegetal , Flores
9.
Hortic Res ; 10(8): uhad124, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554346

RESUMO

Bougainvillea is a perennial ornamental shrub that is highly regarded in ornamental horticulture around the world. However, the absence of genome data limits our understanding of the pathways involved in bract coloration and breeding. Here, we report a chromosome-level assembly of the giga-genome of Bougainvillea × buttiana 'Mrs Butt', a cultivar thought to be the origin of many other Bougainvillea cultivars. The assembled genome is ~5 Gb with a scaffold N50 of 151 756 278 bp and contains 86 572 genes which have undergone recent whole-genome duplication. We confirmed that multiple rounds of whole-genome multiplication have occurred in the evolutionary history of the Caryophyllales, reconstructed the relationship in the Caryophyllales at whole genome level, and found discordance between species and gene trees as the result of complex introgression events. We investigated betalain and anthocyanin biosynthetic pathways and found instances of independent evolutionary innovations in the nine different Caryophyllales species. To explore the potential formation mechanism of diverse bract colors in Bougainvillea, we analyzed the genes involved in betalain and anthocyanin biosynthesis and found extremely low expression of ANS and DFR genes in all cultivars, which may limit anthocyanin biosynthesis. Our findings indicate that the expression pattern of the betalain biosynthetic pathway did not directly correlate with bract color, and a higher expression level in the betalain biosynthetic pathway is required for colored bracts. This improved understanding of the correlation between gene expression and bract color allows plant breeding outcomes to be predicted with greater certainty.

10.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175423

RESUMO

Guanine and cytosine (GC) content is a fundamental component of genetic diversity and essential for phylogenetic analyses. However, the GC content of the ribosomal internal transcribed spacer 2 (ITS2) remains unknown, despite the fact that ITS2 is a widely used phylogenetic marker. Here, the ITS2 was high-throughput sequenced from 29 Corydalis species, and their GC contents were comparatively investigated in the context of ITS2's characteristic secondary structure and concerted evolution. Our results showed that the GC contents of ITS2 were 131% higher than those of their adjacent 5.8S regions, suggesting that ITS2 underwent GC-biased evolution. These GCs were distributed in a heterogeneous manner in the ITS2 secondary structure, with the paired regions being 130% larger than the unpaired regions, indicating that GC is chosen for thermodynamic stability. In addition, species with homogeneous ITS2 sequences were always GC-rich, supporting GC-biased gene conversion (gBGC), which occurred with ITS2's concerted evolution. The RNA substitution model inferred also showed a GC preference among base pair transformations, which again supports gBGC. Overall, structurally based GC investigation reveals that ITS2 evolves under structural stability and gBGC selection, significantly increasing its GC content.


Assuntos
Corydalis , DNA Espaçador Ribossômico/genética , Filogenia , Evolução Molecular , Pareamento de Bases
11.
BMC Plant Biol ; 23(1): 91, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782130

RESUMO

BACKGROUND: Mitochondria are organelles within eukaryotic cells that are central to the metabolic processes of cellular respiration and ATP production. However, the evolution of mitochondrial genomes (mitogenomes) in plants is virtually unknown compared to animal mitogenomes or plant plastids, due to complex structural variation and long stretches of repetitive DNA making accurate genome assembly more challenging. Comparing the structural and sequence differences of organellar genomes within and between sorghum species is an essential step in understanding evolutionary processes such as organellar sequence transfer to the nuclear genome as well as improving agronomic traits in sorghum related to cellular metabolism. RESULTS: Here, we assembled seven sorghum mitochondrial and plastid genomes and resolved reticulated mitogenome structures with multilinked relationships that could be grouped into three structural conformations that differ in the content of repeats and genes by contig. The grouping of these mitogenome structural types reflects the two domestication events for sorghum in east and west Africa. CONCLUSIONS: We report seven mitogenomes of sorghum from different cultivars and wild sources. The assembly method used here will be helpful in resolving complex genomic structures in other plant species. Our findings give new insights into the structure of sorghum mitogenomes that provides an important foundation for future research into the improvement of sorghum traits related to cellular respiration, cytonuclear incompatibly, and disease resistance.


Assuntos
Genoma Mitocondrial , Sorghum , Genoma Mitocondrial/genética , Sorghum/genética , Filogenia , Domesticação , Plantas/genética , Núcleo Celular , Evolução Molecular , Genoma de Planta/genética
12.
Front Plant Sci ; 13: 1052151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531410

RESUMO

The genus Broussonetia (Moraceae) is comprised of three non-hybrid recognized species that all produce high quality fiber essential in the development of papermaking and barkcloth-making technology. In addition, these species also have medicinal value in several countries. Despite their important economical, medicinal, and ecological values, the complete mitogenome of Broussonetia has not been reported and investigated, which would greatly facilitate molecular phylogenetics, species identification and understanding evolutionary processes. Here, we assembled the first-reported three complete Broussonetia (B. papyrifera, B. kaempferi, and B. monoica) mitochondrial genomes (mitogenome) based on a hybrid strategy using Illumina and Oxford Nanopore Technology sequencing data, and performed comprehensive comparisons in terms of their structure, gene content, synteny, intercellular gene transfer, phylogeny, and RNA editing. Our results showed their huge heterogeneities among the three species. Interestingly, the mitogenomes of B. monoica and B. papyrifera consisted of a single circular structure, whereas the B. kaempferi mitogenome was unique and consisted of a double circular structure. Gene content was consistent except for a few transfer RNA (tRNA) genes. The Broussonetia spp. mitogenomes had high sequence conservation but B. monoica with B. kaempferi contained more synteny blocks and were more related, a finding that was well-supported in organellar phylogeny. Fragments that had been transferred between mitogenomes were detected at plastome hotspots that had integrated under potential mediation of tRNA genes. In addition, RNA editing sites showed great differences in abundance, type, location and efficiency among species and tissues. The availability of these complete gap-free mitogenomes of Broussonetia spp. will provide a valuable genetic resource for evolutionary research and understanding the communications between the two organelle genomes.

13.
Front Plant Sci ; 13: 994567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119616

RESUMO

TCP proteins are plant-specific transcription factors, which are involved in a broad range of physiological processes of plant growth and development. However, the origin and evolutionary history of this gene family is not fully resolved. Here, we present a genome-wide survey of TCP genes in 59 species (including 42 genomes and 17 transcriptomes) covering all main lineages of green plants, and reconstruct the evolutionary history of this gene family. Our results suggested that the origin of TCP genes predated the emergence of land plants, possibly in the common ancestor of Phragmoplastophyta. The TCP gene family gradually experienced a continuous expansion and grew from a few members in algae, moss and lycophytes to dozens, and sometimes over 50 members in angiosperms. Phylogenetic analysis indicated that at least four subclades (Class I and three subclades of Class II) have been occurred in the ancestor of spermatophyte (seed plant). Both dispersed duplication and segmental duplication or whole-genome duplication (WGD) contributed significantly to the expansion of the TCP gene family over the course of evolution. Our findings provide a comprehensive evolutionary analysis of the TCP gene family and highlight the importance of gene duplications in the evolution of this plant-specific transcription factors.

14.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142757

RESUMO

Although more than 9100 plant plastomes have been sequenced, RNA editing sites of the whole plastome have been experimentally verified in only approximately 21 species, which seriously hampers the comprehensive evolutionary study of chloroplast RNA editing. We investigated the evolutionary pattern of chloroplast RNA editing sites in 19 species from all 13 families of gymnosperms based on a combination of genomic and transcriptomic data. We found that the chloroplast C-to-U RNA editing sites of gymnosperms shared many common characteristics with those of other land plants, but also exhibited many unique characteristics. In contrast to that noted in angiosperms, the density of RNA editing sites in ndh genes was not the highest in the sampled gymnosperms, and both loss and gain events at editing sites occurred frequently during the evolution of gymnosperms. In addition, GC content and plastomic size were positively correlated with the number of chloroplast RNA editing sites in gymnosperms, suggesting that the increase in GC content could provide more materials for RNA editing and facilitate the evolution of RNA editing in land plants or vice versa. Interestingly, novel G-to-A RNA editing events were commonly found in all sampled gymnosperm species, and G-to-A RNA editing exhibits many different characteristics from C-to-U RNA editing in gymnosperms. This study revealed a comprehensive evolutionary scenario for chloroplast RNA editing sites in gymnosperms, and reported that a novel type of G-to-A RNA editing is prevalent in gymnosperms.


Assuntos
Edição de RNA , RNA de Cloroplastos , Sequência de Bases , Cloroplastos/genética , Cycadopsida/genética , Evolução Molecular , Filogenia , Edição de RNA/genética , RNA de Cloroplastos/genética
15.
Genes (Basel) ; 13(6)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35741799

RESUMO

There is a paradox in the plant mitochondrial genome, that is, the genic region evolves slowly while the intergenic region evolves rapidly. Thus, the intergenic regions of the plant mitochondrial genome are difficult to align across different species, even in closely related species. Here, to character the mechanism of this paradox, we identified interspecific variations in the Ginkgo biloba, Oryza sativa, and Arabidopsis thaliana mitochondrial and plastid genome at a genome-wide level. The substitution rate of synonymous sites in genic regions was similar to the substitution rate of intergenic regions, while the substitution rate of nonsynonymous sites in genic regions was lower than that in intergenic regions, suggesting the mutation inputs were the same among different categories within the organelle genome, but the selection pressure varied. The substitution rate of single-copy regions was higher than that of IR (inverted repeats) in the plastid genome at an intraspecific level. The substitution rate of single-copy regions was higher than that of repeats in the G. biloba and A. thaliana mitochondrial genomes, but lower in that of O. sativa. This difference may be related to the length and distribution of repeats. Copy number variations that existed in the G. biloba and O. sativa mitochondrial genomes were confirmed. This study reveals the intraspecific variation pattern of organelle genomes at a genome-wide level, and that copy number variations were common in plant mitochondrial genomes.


Assuntos
Arabidopsis , Genoma Mitocondrial , Arabidopsis/genética , Variações do Número de Cópias de DNA , DNA Intergênico , Mutação , Filogenia , Sementes
16.
BMC Biol ; 19(1): 146, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320951

RESUMO

BACKGROUND: Mitochondrial gene transfer/loss is common in land plants, and therefore the fate of missing mitochondrial genes has attracted more and more attention. The gene content of gymnosperm mitochondria varies greatly, supplying a system for studying the evolutionary fate of missing mitochondrial genes. RESULTS: Here, we studied the tempo and pattern of mitochondrial gene transfer/loss in gymnosperms represented by all 13 families, using high-throughput sequencing of both DNA and cDNA. All 41 mitochondrial protein-coding genes were found in cycads, Ginkgo and Pinaceae, whereas multiple mitochondrial genes were absent in Conifer II and Gnetales. In Conifer II, gene transfer from mitochondria to the nucleus followed by loss of the mitochondrial copy was common, but complete loss of a gene in both mitochondrial and nuclear genomes was rare. In contrast, both gene transfer and loss were commonly found in Gnetales. Notably, in Conifer II and Gnetales, the same five mitochondrial genes were transferred to the nuclear genome, and these gene transfer events occurred, respectively, in ancestors of the two lineages. A two-step transfer mechanism (retroprocessing and subsequent DNA-mediated gene transfer) may be responsible for mitochondrial gene transfer in Conifer II and Gnetales. Moreover, the mitochondrial gene content variation is correlated with gene length, GC content, hydrophobicity, and nucleotide substitution rates in land plants. CONCLUSIONS: This study reveals a complete evolutionary scenario for variations of mitochondrial gene transferring in gymnosperms, and the factors responsible for mitochondrial gene content variation in land plants.


Assuntos
Genes Mitocondriais , Genoma Mitocondrial , Cycadopsida/genética , Evolução Molecular , Genoma Mitocondrial/genética , Mitocôndrias/genética , Filogenia , Traqueófitas/genética
17.
Mitochondrial DNA B Resour ; 6(1): 257-258, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33659648

RESUMO

Corydalis DC., the largest genus of Papaveraceae, was recognized as one of the most taxonomically challenging plant taxa. Due to the lack of genetic information used in previous studies, species discrimination and taxonomic assignment in Corydalis have not been fully solved. Here, the complete chloroplast genomes were reported for Corydalis edulis Maxim. and Corydalis shensiana Liden, with their genome sizes being 154,395 and 155,938 bp, respectively. Both of the chloroplast genomes comprise two inverted repeat (IR) regions, separated by a large single-copy (LSC) region and a small single-copy (SSC) region, and encode 130 genes, including 85 protein-coding genes, 8 ribosomal RNA genes, 37 transfer RNA genes. Our study will provide novel insight into the molecular phylogeny and classification of Corydalis.

18.
BMC Evol Biol ; 20(1): 10, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959109

RESUMO

BACKGROUND: Gymnosperms represent five of the six lineages of seed plants. However, most sequenced plant mitochondrial genomes (mitogenomes) have been generated for angiosperms, whereas mitogenomic sequences have been generated for only six gymnosperms. In particular, complete mitogenomes are available for all major seed plant lineages except Conifer II (non-Pinaceae conifers or Cupressophyta), an important lineage including six families, which impedes a comprehensive understanding of the mitogenomic diversity and evolution in gymnosperms. RESULTS: Here, we report the complete mitogenome of Taxus cuspidata in Conifer II. In comparison with previously released gymnosperm mitogenomes, we found that the mitogenomes of Taxus and Welwitschia have lost many genes individually, whereas all genes were identified in the mitogenomes of Cycas, Ginkgo and Pinaceae. Multiple tRNA genes and introns also have been lost in some lineages of gymnosperms, similar to the pattern observed in angiosperms. In general, gene clusters could be less conserved in gymnosperms than in angiosperms. Moreover, fewer RNA editing sites were identified in the Taxus and Welwitschia mitogenomes than in other mitogenomes, which could be correlated with fewer introns and frequent gene losses in these two species. CONCLUSIONS: We have sequenced the Taxus cuspidata mitogenome, and compared it with mitogenomes from the other four gymnosperm lineages. The results revealed the diversity in size, structure, gene and intron contents, foreign sequences, and mutation rates of gymnosperm mitogenomes, which are different from angiosperm mitogenomes.


Assuntos
Genoma Mitocondrial , Taxus/genética , Núcleo Celular , Cycadopsida/genética , Evolução Molecular , Íntrons , Magnoliopsida/genética , Filogenia , Edição de RNA
19.
PLoS One ; 9(5): e98133, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24848365

RESUMO

Tribe Theeae, which includes some economically important and widely grown plants, such as beverage tea and a number of woody ornamentals, is the largest member of the Theaceae family. Using five genomic regions (chloroplast: atpI-H, matK, psbA5'R-ALS-11F, rbcL; nuclear: LEAFY) and 30 species representing four of the five genera in this tribe (Apterosperma, Camellia, Polyspora, and Pyrenaria s.l.), we investigated the phylogeny of Theeae and assessed the delimitation of genera in the tribe. Our results showed that Polyspora was monophyletic and the sister of the three other genera of Theeae investigated, Camellia was paraphyletic and Pyrenaria was polyphyletic. The inconsistent phylogenetic placement of some species of Theeae between the nuclear and chloroplast trees suggested widespread hybridization between Camellia and Pyrenaria, Polyspora and Parapyrenaria. These results indicate that hybridization, rather than morphological homoplasy, has confused the current classification of Theeae. In addition, the phylogenetic placement and possible allies of Laplacea are also discussed.


Assuntos
DNA de Cloroplastos/genética , Genes de Plantas , Filogenia , Theaceae/genética , Teorema de Bayes , Núcleo Celular/genética , DNA de Plantas/genética , Fósseis , Variação Genética , Hibridização Genética , Funções Verossimilhança , Modelos Genéticos , Proteínas de Plantas/genética , Ploidias , Análise de Sequência de DNA , Theaceae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...